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Executive Summary 

App-based ridehailing services such as Uber and Lyft have revolutionized travel in urban centers in recent years. A large 

number of studies show that ridehailing improves mobility but increases vehicle travel by inducing more trips and shifting 

trips away from walking and public transit. The impacts of ridehailing, however, depend not only on the travel decisions of 

riders — the number of trips they take and their choice of mode — but also on the choices of ridehail drivers when they are 

out of service between paid rides. These choices about where to go between trips not only determine the overall impacts 

of ridehailing on vehicle travel and associated congestion and pollution, but also on parking availability. 

In this report, we quantify the choices that ridehail drivers make between paid trips. We develop a method to partition 

each trip into cruising (circling around while looking for a fare), repositioning (moving to another location in anticipation 

of the next ride request), and parking segments, and apply it to a dataset of 5.3 million trips in San Francisco. We also 

develop a regression model to quantify the factors associated with driver choices. 

We find that the average out-of-service segment between paid trips lasts 4.1 minutes, during which time drivers travel 1.0 

km (0.6 miles). The average in-service vehicle trip length is 4.2 km (2.6 miles), meaning that the out-of-service portion 

accounts for 19 percent of ridehail vehicle travel. Our estimated proportion of 19 percent is lower than the roughly 40 

percent typically cited in the literature, but our data excludes deadheading between a driver’s home and when they turn 

on the ridehail app for the first time, and the portion of the trip between accepting a ride request and picking up the 

passenger. High demand and short distances within San Francisco may also account for our lower estimate. 

 

Figure ES-1. Driver behavior when out-of-service 

Repositioning accounts for nearly two-thirds (63 percent) of out-of-service time, with parking accounting for a further 14 

percent (these figures exclude short trips). Both repositioning and parking can represent rational behavior on the part of 

drivers seeking to minimize downtime and maximize revenue from their next trip. Indeed, our regression models suggest 
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that drivers tend to make reasonable choices between repositioning and parking, heading to high-demand locations based 

on the time of day. For example, we find they tend to reposition away from dense residential neighborhoods in the 

afternoon and evening when demand is likely to be higher in other areas, but stay within those neighborhoods in the 

morning and at night. However, we also find suggestive evidence of racial bias, supporting previous studies of both taxis 

and ridehailing that indicate that drivers tend to avoid neighborhoods with high proportions of residents of color. 

From a public interest perspective, it is unclear whether a city should favor repositioning or parking. More time spent 

parked means less vehicle travel, but potentially greater impacts on the availability of curbspace for parking, and 

potentially for drop-offs and deliveries as well. More repositioning, on the other hand, decreases the pressure on curb 

space and allows the fleet to operate more efficiently by moving to higher-demand areas, but at the cost of more vehicle 

travel and the associated congestion and pollution. 

Cruising accounts for 23 percent of the time between trips. Compared to repositioning and parking, cruising would seem 

to offer little advantage to a ridehail driver in most parts of the city, at least if parking is readily available. Cruising also 

exacerbates congestion and pollution. Explaining why ridehail drivers cruise is beyond our ability to answer with the 

present dataset, and future research might usefully probe driver decision-making processes. In some cases, a lack of 

available curb space or high levels of parking enforcement may be the cause. Possibly, drivers believe that they can game 

the ridehail firms’ matching system by driving around to be closer to potential passengers, and thus being allocated a trip. 

Alternatively, psychological factors may be at work. More experienced drivers cruise less, suggesting that drivers learn 

over time that cruising is a suboptimal strategy. 

Cruising might be partly reduced through tweaks to driver-facing ridehail apps, prompting drivers to find a safe place to 

park while waiting for their next ride. Cities, meanwhile, might consider how ridehailing can take advantage of curbspace 

in front of residential driveways and other curb cuts that are used only occasionally. Our results suggest that some ridehail 

drivers already park in front of driveways on an informal basis, as they can quickly move if a resident needs to access their 

garage.  

Ultimately, however, revising fee structures to be distance- and time-based, regardless of whether a passenger is in the 

vehicle, may be the most effective way for cities to reduce the external costs of ridehailing including congestion and 

pollution. Ridehail firms would pay these fees, and determine whether and how to pass them on to passengers. In addition, 

place-based time charges might be used as a proxy for parking fees, and to encourage drivers to park in locations where 

they do not compete with other curbspace users. Many cities already levy ridehail fees or taxes on a per-trip or percentage 

basis, but these charges only apply to the in-service portion of a trip. To more comprehensively address pollution, 

congestion, and other externalities caused by ridehailing, policy makers need to extend these policies to encompass what 

drivers do between trips. 
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Introduction 

App-based ridehailing services, often known as Transportation Network Companies (TNCs), have revolutionized travel in 

urban centers in recent years. TNC firms such as Uber and Lyft often provide more abundant, reliable, and cheaper service 

than taxis, their closest competitor (Brown & LaValle, 2021), leading to rapid growth in ridership. Within San Francisco, for 

example, ridehailing accounted for 15 percent of vehicle trips in 2016 (SFCTA, 2017). 

A large number of studies have analyzed the consequences of ridehailing for travel behavior and congestion. The most 

common finding is that ridehailing induces users to make more trips, and that it shifts trips away from private cars, 

walking, and public transit (Rayle et al., 2016; Hampshire et al., 2017; Clewlow & Mishra, 2017; Gehrke et al., 2019; Babar 

& Burtch, 2020; Bradley et al., 2021). In San Francisco, ridehailing has been the largest contributor to increased congestion 

in recent years (Erhardt et al., 2019). However, in some cases, ridehailing can complement transit use by filling gaps in the 

reach of scheduled bus and rail services (Hall et al., 2018). It can also improve mobility, particularly in neighborhoods 

where car ownership is low (Brown, 2019a) and for older adults (Leistner & Steiner, 2017). 

Less attention, however, has been paid to the strategies of ridehailing drivers, and in particular what they do when out of 

service between paid rides. Most analyses focus on the paid, with-passenger portion of a ridehail trip, but out-of-service 

travel, such as deadheading to the next trip and cruising while waiting for a trip request, may have major consequences for 

the environment and congestion. Driver choices regarding whether and where to park while waiting for the next trip also 

affect curbspace and parking availability. Thus, understanding out-of-service travel is important for developing municipal 

policies for regulating and pricing ridehail services, such as congestion surcharges, and for allocating and pricing 

curbspace (Strong, 2015; Li et al., 2019; Marsden et al., 2020).  

In this report, we quantify the choices that ridehail drivers make between paid trips. We develop a method to partition 

each trip into cruising, repositioning, and parking segments, and apply it to a dataset of 5.3 million trips in San Francisco. 

We find that while almost all trips involve repositioning (traveling to another location in anticipation of receiving a trip 

request), a surprising portion (29 percent) entail at least some cruising. We develop a regression model to quantify the 

factors associated with driver choices, and find that ridehail drivers appear to reposition to neighborhoods where ridehail 

demand is high, but the model also suggests that drivers avoid neighborhoods with high proportions of residents of color. 

The rapid growth of ridehailing mean that our findings are relevant to policymakers dealing with present-day 

transportation challenges. However, our results also provide a preview of what might be expected in a future with 

autonomous vehicles, whose transportation and environmental consequences may bear many parallels to those of 

ridehailing.  
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Driver behavior: comparing taxis and ridehail 

Taxi drivers in large cities often cruise along busy streets in search of a street hail, or reposition to major trip generators 

such as airports and hotels. In New York City, for example, cruising and repositioning account for 44 percent of miles 

driven by taxicabs, with an average of 2.9 miles of out-of-service travel between trips (Abrams et al., 2007, p. 124). Driving 

around rather than waiting at a taxi stand may be rational from the driver’s perspective, as it makes the vacant taxicab 

visible to prospective passengers, but its impacts from a social welfare perspective are mixed. On the one hand, a ready 

supply of available taxis reduces wait times for passengers, but cruising taxis are highly visible contributors to congestion. 

Thus, limiting cruising has often been a key goal of taxicab regulators and a justification for limits on the number of 

taxicabs (Shreiber, 1975; Yang et al., 2005; Abrams et al., 2007). 

Another long-standing regulatory challenge has been to ensure the availability of taxis in low-income neighborhoods and 

communities of color, which typically experience longer wait times. Drivers often decline to accept calls for service to such 

neighborhoods, and also tend to reposition away from them after dropping off a passenger due to perceptions of lower 

demand, fears for their personal safety, and racial profiling (Davis, 2003; Ingram, 2003; Brown, 2019b). Regulatory 

responses have included enforcement “stings,” but also programs such as New York City’s “green cabs,” which can only 

pick up passengers outside of the high-demand areas of Lower Manhattan and the airports (King & Saldarriaga, 2018).  

To what extent do these findings translate from taxis to ridehailing? Both sets of drivers should seek to maximize the 

expected net revenue from their next paid trip, and thus minimize wait time and the distance driven while cruising or 

deadheading. The options open to taxi and ridehail drivers are also similar. They can park (or equivalently, wait at a taxi 

stand), cruise around while remaining in the same general neighborhood, or reposition to a different neighborhood where 

they expect demand to be higher. Cruising and repositioning are often conflated as “deadhead” trips in the literature (e.g. 

Henao & Marshall, 2019; Nair et al., 2020), but conceptually the two categories are distinct. 

While the options of taxi and ridehail drivers may be similar, their optimal strategies are likely to be considerably different 

because their costs and sources of information differ in four main respects. First, while taxi drivers must normally be 

conspicuous to passengers hailing a taxi on the street,1 most cities prohibit ridehail drivers from accepting street hails, and 

in any case the app-based system used by ridehail firms renders such visibility unnecessary. Second, a first-in, first-out rule 

typically applies at taxi stands at hotels, airports, and other major trip generators. In contrast, ridehail drivers are subject 

to the opaque methods that ridehail firms use to match drivers with passengers, and the incentives that the firms use to 

encourage drivers to head to specific locations and to start or extend their shifts. Third, while taxi drivers might rely on 

heuristics or experience to identify high-demand locations, ridehail drivers have access to real-time information on 

demand patterns through their smartphone app. Fourth, taxi drivers may have lower costs for repositioning if, as in cities 

such as San Francisco, they have access to bus lanes or dedicated taxi stands. 

As a result, one would expect ridehail drivers to cruise less frequently than taxi drivers. While cruising may be rational for 

taxi drivers, it is less reasonable for ridehail drivers unless parking is limited or expensive. For a ridehail driver, parking is 

likely to provide similar prospects to cruising in terms of obtaining the next paid ride, without the costs of fuel and vehicle 

wear and tear. Since drivers can easily move if and when an enforcement officer arrives, they have little need to pay for 

 

1 This discussion focuses on street hail taxis, rather than telephone dispatch systems which are more similar to ridehailing 
in the incentive structures that they provide to drivers. 
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parking either. The relative advantages of repositioning for taxis and ridehailing, in contrast, are not intuitively clear, but 

one might expect shifts in the destinations and times of repositioning. Given the dynamic information available to ridehail 

drivers, they might be expected to reposition to a broader range of destinations, not just the hotels and airports that are 

obvious sources of demand for taxis (Dempsey, 1996; Schaller, 2007). 

Little empirical work, however, exists to support or refute these hypotheses. Data sharing by ridehail firms such as Uber 

and Lyft has been extremely limited, meaning that most researchers have focused on the paid portion of the trip which is 

easier to observe through field or household surveys (e.g. Grahn et al., 2019; Brown & LaValle, 2021). Out-of-service 

behavior is harder to identify, and often, the distance driven while cruising and repositioning is simply assumed (e.g. 

Tirachini & Gomez-Lobo, 2020) or simulated based on assumptions of rational driver behavior (e.g. Komanduri et al., 2018; 

Gurumurthy et al., 2020). In almost all travel demand models, the vehicle dematerializes after dropping off a passenger, 

only to reappear on the network at the start of the next paid trip.  

Among the exceptions, Henao and Marshall (2019) find that out-of-service travel accounts for 41 percent of the miles 

driven by ridehail drivers, but this estimate is based on data from a single driver — the first author. Several studies use a 

dataset released by RideAustin to impute out-of-service travel based on pick-up and drop-off locations. While the actual 

paths taken by drivers are uncertain, the data indicate that 37 to 45 percent of total miles driven were by out-of-service 

vehicles (Komanduri et al., 2018; Wenzel et al., 2019). In San Francisco, preliminary analysis of the dataset used for this 

study yielded a figure of 19-21 percent, depending on the day, compared to 44-46 percent for taxicabs (SFCTA, 2017). In 

California as a whole, analysis of data provided by ridehail firms (under a legal requirement) indicates that out-of-service 

travel accounts for 39.5 percent of miles driven (CARB, 2019). Geographically, the broadest estimates are made by 

Cramer and Krueger (2016) using proprietary data provided by Uber; they find that out-of-service travel accounts for 39 

percent of miles by Uber drivers across five major cities. Finally, a study commissioned by Uber and Lyft puts the 

proportion of out-of-service travel at 38-46 percent in a different set of six metropolitan regions (Fehr and Peers, 2019). 

Their breakdown indicates that 28-37 percent of the distance is driven while waiting for a ride request, and 9-10 percent 

while driving to the pick-up location after accepting a request. 

With the exception of the San Francisco study, which is an outlier perhaps in part due to its exclusion of the distance 

between accepting a ride and picking up the passenger, these estimates are remarkably consistent. They suggest that out-

of-service travel by ridehail vehicles is substantial at about 40 percent of the total distance driven. This consistency comes 

in spite of different methodologies, data sources, and scopes — for example, whether they consider travel between a 

driver’s home and the first activation of the ridehail app, or whether they consider cruising or assume shortest-path travel 

distances. Surprisingly, estimates of out-of-service travel for ridehail services are not much less than those for taxis, in 

spite of the information advantages held by the former. 

Studies of racial equity, meanwhile, suggest that discrimination still exists in the ridehail market, although perhaps to a 

lesser extent than with conventional taxis. At the individual level, a field audit that requested rides in Boston found that 

cancellations doubled when using an African American-sounding name rather than a white-sounding name (Ge et al., 

2020). On the other hand, another study indicates that aggregate wait times for ridehailing requests in Seattle are no 

worse in neighborhoods with a higher proportion of people of color, after controlling for residential and employment 

densities and average income (Hughes & MacKenzie, 2016). 

  



Where Ridehail Drivers Go Between Trips: Trading off Congestion and Curb Availability?  

 

7 

Research Approach 

Ridehail Data 

We used a unique dataset of 5.3 million ridehail trips in San Francisco from November 12, 2016 through December 21, 

2016, compiled by researchers at Northeastern University by querying the Uber and Lyft Application Programming 

Interfaces (APIs) which give access to vehicle locations. Further details of data acquisition and processing are elaborated 

in Cooper et al. (2018). The dataset has been used in several empirical analyses, most notably an assessment of the 

congestion impacts of ridehailing in San Francisco (Erhardt et al., 2019), and a profile of TNC activity in San Francisco 

(SFCTA, 2017). However, these analyses focus on the occupied portions of the rides, rather than the out-of-service 

portions on which we focus here. 

Each trip in the dataset consists of a sequence of points with geographic coordinates and a timestamp. On average, the 

points are 3.0 seconds apart. We cleaned the dataset to drop points with invalid coordinates, restricted the dataset to trips 

within the city of San Francisco, and excluded shared (e.g., Lyft Line) and delivery (e.g., UberEats) trips. Note that the 

dataset only includes points when the ridehail app is turned on and the driver is available to accept a ride.  

We map-matched each trip to the OpenStreetMap road network in order to provide more accurate estimates of driving 

distances that are not affected by irregularities in the GPS trace. We used a three-stage process: (i) matching GPS points 

to OpenStreetMap (OSM) links using Mapillary’s publicly available map-matching algorithm,2 (ii) dropping links where the 

preceding and succeeding links directly connect, in order to eliminate out-and-back detours down side streets, and (iii) 

interpolating gaps in the link sequence using the turn-restricted shortest path function in the pgRouting software 

package. 

Classification of Behavior 

We classified each point3 as short, parking, cruising, or repositioning as follows:  

Short points are those on trips where either (i) there are fewer than six GPS points or (ii) the trip duration is less than two 

minutes. For these trips, it was not possible to determine the driver’s intent. Except where indicated, short trips are 

excluded from the subsequent analysis.  

Parking points are defined as a cluster of points within any three-minute interval where at least 90 percent of the points 

are within 7.5 meters of each other. After identifying these clusters, each point within the cluster was classified as parking, 

and the parking location was defined as the closest point to the centroid of the cluster. To avoid classifying vehicles stuck 

in congested traffic as parked, we created exceptions where time- and location-specific traffic speeds (obtained from 

 

2 Code is available at https://github.com/caomw/map_matching 
3 We did not classify the first point in each GPS trace, because the classification of each point is based on the driver’s 
behavior between that point and the previous point. 
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INRIX) were less than three mph, or where the GPS point was on a freeway. In these instances, the parking classification 

was not applied. 

Cruising points are those that involve circling or backtracking. We first identified cruising at the trip level using the 

definition in Weinberger et al. (2020) — where the actual (map-matched) distance is at least 200 meters longer than the 

shortest-path network distance. Within each cruising trip, however, the driver may not be cruising the entire time. 

Therefore, we identified the cruising portion of each trip as a function of the path of the squared displacement — the 

squared (Euclidean) distance from each point to the origin. This metric is often used in movement ecology studies to 

distinguish the movements of individual animals, such as deer collared with a GPS tracker, and can distinguish between 

migratory, non-migratory, and dispersing behavior (Killeen et al., 2014; Singh et al., 2016).  

Specifically, if we plot the squared displacement over time, a positive slope indicates that the driver is moving away from 

the origin. A negative slope shows that the driver is returning towards their origin (i.e., the start of the out-of-service 

segment). After smoothing the standardized slope,4 consecutive points with a slope of +1 form a positive segment, and 

consecutive points with a slope of -1 form a negative segment. We therefore classified a point as cruising if the trip 

involves cruising per the definition above and either (i) the point is on a negative segment, or (ii) the point is on a positive 

segment, but its squared displacement is offset by a subsequent negative segment. Figure 1 provides an example. 

Repositioning points constitute the remainder of the data set. In other words, all other points (i.e., those that are not 

classified as parking, cruising, or short) were classified as repositioning. 

 

Figure 1. Example of cruising and repositioning segments 

The driver’s route is shown in the left panel, with the right panel showing how squared displacement changes over the route. The 
first segment (marked in black) is classified as repositioning. The subsequent segments are classified as cruising, either because 

 

4 The smoothing method considers five points before and after the current point. If these points have the same normalized 
slope of square displacement, and the current point is also within 30 seconds of these points, we assign the same value of 
the normalized slope of these 10 points to the current point. 

start of trip

end of trip

cruising (segment 1)

cruising (segment 2)

cruising (segment 3)

repositioning
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they have negative squared displacement, or because a positive segment is offset by a subsequent negative segment, as shown by 
the three pairs of segments labeled in the figure as (1+) and (1-), (2+) and (2-), and (3+) and (3-). 

Other Data Sources 

Each GPS point in the database was associated with a number of independent variables as shown in Table 1. These 

variables, such as household density, age of population, income, and race and ethnicity, mostly reflect the characteristics 

of the Transportation Analysis Zone (TAZ), the geographical unit used in transportation analysis by the San Francisco 

County Transportation Authority (SFCTA), in which the point is located. We produced a weighted average for each point 

by aggregating the values of the variables for the TAZ containing the point and neighboring TAZs where the TAZ values 

were weighted using a distance decay function. This smoothing algorithm avoids abrupt changes in the values of the 

variables at TAZ boundaries, and also reflects how drivers are likely to perceive gradual changes in neighborhood 

demographics and parking supply. There are 981 TAZs in San Francisco, with a mean surface area of 0.12 km2. We added 

lagged dependent variables (indicating prior driver behavior) and time of day and day of week variables for each point. For 

Lyft trips, we also calculated driver experience, measured as the number of trips by that particular driver observed in the 

dataset. (The Uber API does not provide a persistent driver identifier.) 

Regression Analysis 

We used multinomial logistic regression to estimate the effects of the various variables in Table 1 on the driver’s decisions 

to reposition, cruise, or park. The model tested whether these decisions could be explained based on any of the TAZ level 

variables in Table 1 or differed based on the time or day of the week. Details of the regression modeling are provided in 

the Appendix. 
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Table 1. Descriptive Statistics 

Description Mean Standard 

Deviation 

Data Source 

TAZ-level variables 

Household density, calculated by the number of households divided by 

TAZ area 

26.827 20.276 SFCTA 

Share of the population age 62 or over 0.180 0.068 SFCTA 

Fraction of population of working age (aged 20-64) 0.678 0.151 SFCTA 

Total employment density, calculated as the total employment divided 

by TAZ area 

99.428 175.733 SFCTA 

Service and visitor employment density, calculated as the sum of 

service and visitor employment divided by TAZ area 

20.802 31.453 SFCTA 

Fraction of high-income households, calculated as the fraction of 

households in the highest and second highest income quantiles 

0.391 0.137 SFCTA 

On-street parking capacity (number of spaces) 238.156 138.104 SFCTA 

Off-street public parking capacity (number of spaces) 115.835 144.410 SFCTA 

Off-street private parking capacity (estimated number of spaces) 338.821 194.098 SFCTA 

Fraction of population that is Hispanic / Latino 0.123 0.098 US Census 

Fraction of population that is African American 0.059 0.062 US Census 

Fraction of population that is white 0.536 0.172 US Census 

Other variables 

Driver experience, calculated by counting the number of trips for each 

driver [only available for the Lyft subsample]   

212.283 139.593 Calculated 

Day of week, a categorical variable: “weekday” for Monday to Thursday, 

“fri” for Friday, “weekend” for Saturday and Sunday 

- - Calculated 

Time of day, binary variables indicating 6 periods: “ea” for 3-6 am, “am” 

for 6-9 am, “md” for 9 am-3:30 pm, “pm” for 3:30-6:30 pm, “ev” for 6:30 

pm-0:00 am, “night” for 0-3 am. 

- - Calculated 

Lag cruising. Dummy variable that is 1 if the previous point is classified 

as cruising (only for point level regression) 

- - Calculated 

Lag parking. Dummy variable that is 1 if the previous point is classified as 

parking (only for point level regression) 

- - Calculated  
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Results 

Classification of driver behavior 

We begin by presenting the broad patterns of driver behavior in terms of the choices between parking, cruising, and 

repositioning. Table 2 shows the percentage of time and distance driven in each of the categories. Repositioning accounts 

for the majority of the time and distance traveled by out-of-service drivers, and almost all trips involve at least a small 

amount of repositioning. Perhaps surprisingly given the fuel and wear-and-tear costs of cruising, more time is spent 

cruising than parking, and the average trip cruises for nearly half a kilometer. 

As shown in Table 2, the average out-of-service distance traveled is 0.98 km (0.6 miles). The average in-service vehicle trip 

length is 4.2 km (2.6 miles), based on a previous analysis of the same dataset (SFCTA, 2017). Therefore, the out-of-service 

portion accounts for 19 percent of ridehail vehicle travel. Note that this is a lower bound estimate as it excludes travel 

before and after the driver activates the app, and the portion of the out-of-service trip between accepting a ride request 

and picking up the passenger. 

Drivers for the two ridehail firms operating in San Francisco — Uber and Lyft — spend almost identical proportions of their 

time across the three categories of parking, cruising, and repositioning. However, out-of-service trips are longer for Lyft 

drivers (5.5 minutes and 1.35 km, compared to 3.6 minutes and 0.86 km for Uber drivers). Lyft drivers also have a smaller 

proportion of short trips (36 percent compared to 46 percent for Uber). Since Uber accounts for three-quarters of the 

trips in our sample, it is likely that economies of scale lead to their drivers obtaining a paid fare more quickly, reducing the 

amount of out-of-service travel required. 

There is surprisingly little geographic variation in the three behaviors across the city (Figure 2). Drivers finding themselves 

in the ring of dense residential neighborhoods around the downtown core are more inclined to park rather than reposition 

or cruise, but the effects are not strong. Northeastern San Francisco — the densest part of the city — accounts for the 

largest share of out-of-service time (Figure 2) and trip starts and ends (Figure 3). There is a noticeable concentration of 

trip starts on freeway corridors, perhaps reflecting drivers turning on their app as they enter the city. Otherwise, there is 

no obvious geographic pattern in the number of out-of-service trip ends minus the number of trip starts (net trip flows), 

with Figure 3 showing a patchwork quilt across the city. The exception is along freeways, where for obvious reasons there 

is a net movement away from these facilities. 

Table 2. Classification of out-of-service driver behavior 

 % of trips Mean time per trip Mean distance per trip  

Excluding short trips    

Parking 10%* 0.9 mins (14%) N/A 

Cruising 29%* 1.5 mins (23%) 0.35 km (22%) 

Repositioning 86%* 4.1 mins (63%) 1.22 km (78%) 

All trips 100% 6.6 mins 1.57 km 

Including short trips    

Short 44% 0.9 mins 0.22 km 
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 % of trips Mean time per trip Mean distance per trip  

Not short 56% 6.6 mins 1.57 km 

All trips 100% 4.1 mins 0.98 km 

* Trips may include multiple behaviors. This column counts trips that have at least one point in a given behavior. 

 

Figure 2. Geographic patterns in parking, cruising, parking, and repositioning 

Panels A, B and C show the fraction of time within each TAZ spent parking, cruising, and repositioning respectively. Each 

category spans a ten percentage point range (e.g. 40-50% below average, 30-40% below, etc.) Panel D shows the distribution of 

out-of-service time across the city, normalized to land area and expressed as thousand hours per square kilometer.  
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Figure 3. Net out-of-service flows 

Panels A and B and C show the number of out-of-service trip starts and trip ends in each TAZ, normalized to area and express as 

deciles. Panel C shows the net movement, with red-shaded TAZs having more trip starts than ends (a net movement away) and 

blue-shaded TAZs having more trip ends than trip starts. 

Parking 

We now consider the characteristics of parking events. The map in Figure 4 (left panel) shows a concentration in the inner 

ring of dense residential neighborhoods. Within this general area, however, drivers find a range of parking options. Off-

street parking is most visibly concentrated in grocery store surface parking lots, gas stations, and similar locations, where 

drivers may be able to linger for a short time before being moved on by security staff or parking attendants. On-street 

parking is spread more diffusely, but concentrations are evident along neighborhood commercial corridors. In some cases, 

ridehail drivers park on blocks where driveways, fire hydrants, loading zones, or other restrictions preclude parking for 

regular vehicles, but mean that curb space is readily usable by ridehail drivers who can quickly move if needed. These 

concentrations are most visible in an interactive online version of the parking map (right panel of Figure 4), available at 

https://tncparking.sfcta.org. 

Overall, almost all the time spent parking (93 percent of the total duration) occurs on-street. Non-metered on-street 

spaces (both legal and illegal) account for the majority of ridehail parking, with the largest share (31 percent) occurring on 

residential streets (Table 3 and Figure 5). Parking at meters accounts for just over one-third of the aggregate time spent 

parked, but given that most drivers do not park at all while out-of-service, this amounts to only 12 seconds in the average 

trip. Thus, on a per-trip basis, the impact on parking availability is minimal, as is the revenue loss to the City (less than half 

a cent). However, given the 1.2 million ridehail trips per week in late 2016 (SFCTA, 2017), aggregate meter revenue 

amounts to more than $200,000 per year, based on the typical meter rate of $2.50 per hour. This calculation also excludes 

time spent while loading or unloading passengers at meters, and stays of less than three minutes (the minimum length of 

a parking event in the analysis).  
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Figure 4. Concentrations of parking locations 

Each location is weighted by the length of time parked. The right panel shows a screenshot from the interactive online map 

available at https://tncparking.sfcta.org. Blue symbols denote on-street parking, and red symbols denote off-street parking, with 

a gas station and surface lots at two grocery stores being readily apparent. 

Table 3. Time spent parked (hours per week) 

 Metered hours* Non-metered hours 

Parking meter 1,562 (37%) 2,281 (37%) 

On-street: residential 1,303 (31%) 1,918 (31%) 

On-street: other 992 (24%) 1,557 (25%) 

Off-street 353 (8%) 368 (6%) 

Total 4,209 6,124 

* Typically Mon-Sat 9am-6pm. A total of 37 percent of trips in our dataset take place during metered hours. 

Includes trips with no parking events. Time spent parked is calculated on a per-trip basis, and scaled up to a weekly aggregate 

based on 1.2 million ridehail trips per week in late 2016 (SFCTA, 2017). 

Parking meter locations are defined as those within 10 meters of a parking meter. We used OpenStreetMap (OSM) to identify 

residential streets and off-street parking locations (signified by a “service” classification in OSM, which typically consists of access 

roads or parking aisles in surface lots). We were unable to identify parking garages.  

Downtown

Freeways
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Figure 5. Distribution of time spent parked 

Determinants of driver behavior 

We now consider the associations between neighborhood characteristics and a driver’s decision to park, cruise, or 

reposition, using the logistic regression models discussed in the Research Approach section. Two coefficients are attached 

to each variable, indicating the associated change in the probability of repositioning and cruising respectively, compared 

to a baseline behavior of parking. All coefficients are shown in Table A-1 and, with the confidence intervals graphically 

represented, in Figure A-2.  

The variables are standardized, and so each coefficient represents the effect of a one-standard deviation change. A 

positive sign indicates that that behavior is more likely compared to parking, and a negative sign that it is less likely. For 

example, drivers are less likely to reposition away from TAZs with a high proportion of White residents (coefficient of –

0.059), and slightly less likely to cruise (–0.005), compared to parking. 

Given the large sample size, most of the coefficients are statistically significant at conventional levels. However, they are 

hard to interpret given that there are three separate behaviors (parking, cruising, and repositioning); and interaction terms 

that allow our density coefficients to vary by time of day and day of week (right columns in Table A-1). Therefore, Figure 6 

plots the effects of each variable in terms of the probabilities of each behavior. Several findings emerge from these 

analyses.  

Ridehail drivers tend to reposition away from neighborhoods with more parking, especially on-street parking as shown in 

Figure 6A. This perhaps indicates that individuals might choose to drive themselves to neighborhoods with plentiful 

parking, meaning less demand for ridehail services in these areas. This demand-side effect appears to outweigh the 

advantage to ridehail drivers of readily available parking.  
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Drivers also tend to reposition away from neighborhoods with a higher proportion of residents of color, and do the 

opposite in neighborhoods with more White residents (Figure 6C-E).5 These findings provide suggestive evidence that 

drivers avoid neighborhoods with more people of color, supporting the findings of the earlier research on both ridehail and 

taxi drivers discussed above.  

As seen in Figure 6G-I, the effects of density are somewhat counterintuitive. Drivers are more likely to reposition away 

from neighborhoods with higher residential or service employment density, even though these types of neighborhoods 

might be expected to generate more ridehail trips, whether due to the presence of bar and restaurant customers or the 

lower car ownership rates seen in dense residential neighborhoods. In contrast, drivers are less likely to reposition away 

from neighborhoods with a higher density of non-service employment. However, a more intuitive picture emerges when 

we consider how the effects of density change over the course of the day and week, through the interaction terms in the 

regression model. As illustrated in Figure 7, while there is little change in the effect of density throughout the week, there 

are strong time-of-day effects. Drivers are more likely to reposition away from dense residential neighborhoods in the 

afternoon and evening, and less likely to do so in the morning and at night, presumably when more people are at home to 

request ridehail trips. The opposite patterns are seen with employment density (but not service and visitor employment 

density), with drivers more likely to reposition away from job-rich areas in the mornings, presumably when potential 

customers are traveling from home to work. In addition to perceptions of demand, lack of parking and traffic congestion 

may also be factors that affect repositioning decisions.  

Figure 6F also plots the effects of driver experience (estimated using the Lyft subsample only). Full-time drivers are less 

likely to cruise and more likely to reposition, suggesting that they are more aware of areas of high demand. 

  

 

5 The baseline category in the regressions is the fraction of Asian residents. The negative coefficient for the fraction of 
White residents shows that drivers are less likely to reposition away from a TAZ if it has a higher fraction of White 
residents compared to Asian residents. While the coefficient for Black residents is also negative, it is much smaller than 
that for White residents. The positive coefficient for Latinx residents means that repositioning away is even more likely, 
again compared to the baseline of Asian residents. 
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Figure 6. Probability of specific behaviors given change in key variables 

The plots show the probability of repositioning, cruising, and parking against changes in several key independent variables, which 
are normalized so that the x-axis indicates standard deviations from the mean. All other variables are held at their means. For 
example, the upper-left plot shows that repositioning is the most common behavior, but even more so in high-residential density 
neighborhoods. As the prevalence of repositioning increases with density, that of cruising declines, while parking remains at 
similar levels.  
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Figure 7. Effect of density on driver behavior by day of week and time of day 

The plots show how the changes in probability (measured by odds ratios) for residential, employment, and service/visitor density 
vary with the time of day and day of week. Positive changes mean that the probability of cruising (red bars) or repositioning (blue 
bars) increases more than the baseline probability of parking, and vice versa. For example, the impact of household density is 
similar on weekdays and weekend days (top left plot). But drivers are more likely to cruise in and reposition away from higher-
density neighborhoods in the afternoon and evening, and less likely at night and in the mornings (top right plot).  
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Conclusions 

The choices made by ridehail drivers about where to go between trips determine the overall impacts of ridehailing on 

vehicle travel and associated congestion and pollution, as well as on parking availability. There is a tradeoff between the 

two — more time spent parked means less vehicle travel, but potentially greater impacts on the availability of curbspace 

for parking, drop-offs and deliveries. More out-of-service vehicle travel, on the other hand, decreases the pressure on curb 

space and allows the fleet to operate more efficiently through repositioning to higher-demand areas, but at the cost of 

more vehicle travel, congestion and pollution. 

Such tradeoffs between parking demand and vehicle travel would also apply to future autonomous vehicles, as 

demonstrated by Kondor et al. (2020) in the Singapore context. For a given number of trips, the more that the deployment 

of autonomous vehicles lowers parking demand, the greater the distance driven by out-of-service vehicles. In this report, 

we provide the first analysis of how ridehail drivers make these tradeoffs using a dataset of 5.3 million out-of-service trips 

in San Francisco. 

We find that the average out-of-service segment between paid trips lasts 4.1 minutes, during which time drivers travel 1.0 

km (0.6 miles). The average in-service vehicle trip length is 4.2 km (2.6 miles), meaning that the out-of-service portion 

accounts for 19 percent of ridehail vehicle travel. Our estimated proportion of 19 percent is lower than the roughly 40 

percent typically cited in the literature, but our data excludes deadheading between a driver’s home and when they turn 

on the ridehail app for the first time, and the portion of the trip between accepting a ride request and picking up the 

passenger. High demand and short distances within San Francisco may also account for our lower estimate. 

We classify points on each out-of-service trip as cruising, repositioning, or parking. Both repositioning and parking can 

represent rational behavior on the part of drivers seeking to minimize downtime and maximize revenue from their next 

trip. Indeed, our regression models suggest that drivers tend to make reasonable choices between repositioning and 

parking, heading to high-demand locations based on the time of day. For example, they reposition away from dense 

residential neighborhoods in the afternoon and evening when demand is likely to be higher in other areas, but stay within 

those neighborhoods in the morning and at night. However, we also find suggestive evidence of racial bias, supporting 

previous studies of both taxis and ridehailing (Ingram, 2003; Ge et al., 2020) that indicate that drivers tend to avoid 

neighborhoods with high proportions of people of color. 

While cruising by traditional taxicabs makes them visible to potential passengers, it would seem to offer little advantage 

to a ridehail driver who can simply park instead. Therefore, perhaps our most surprising finding is that cruising accounts 

for 23 percent of the out-of-service time and 22 percent of the out-of-service distance driven by ridehail drivers (excluding 

short trips). Cruising in lieu of parking means that the impacts on curb occupancy and meter revenue loss are smaller than 

might be expected, but those on congestion, pollution, and the other consequences of vehicle travel are greater. 

Why do ridehail drivers cruise? This question is beyond our ability to answer with the present dataset, and future research 

might usefully probe driver decision-making processes. In some cases, a lack of available curb space or high levels of 

parking enforcement may be the cause. Possibly, drivers believe that they can game the trip allocation system by driving 

around to be closer to potential passengers, and thus being allocated a trip. Alternatively, psychological factors may be at 

work. More experienced drivers cruise less, suggesting that drivers learn over time that cruising is a suboptimal strategy. 
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Cruising might partly be reduced through tweaks to driver-facing ridehail apps, prompting drivers to find a safe place to 

park while waiting for their next ride. Cities, meanwhile, might consider how ridehailing can take advantage of curbspace 

in front of residential driveways and other curb cuts that are used only occasionally. Some ridehail drivers already park in 

front of driveways on an informal basis, as they can quickly move if a resident needs to access their garage.  

Ultimately, however, revising fee structures to be distance- and time-based, regardless of whether a passenger is in the 

vehicle, may be the most effective way for cities to reduce the external costs of ridehailing including congestion and 

pollution. Ridehail firms would pay these fees, and determine whether and how to pass them on to passengers. In addition, 

place-based time charges might be used as a proxy for parking fees, and to encourage drivers to park in locations where 

they do not compete with other curbspace users. Many cities already levy ridehail fees or taxes on a per-trip or percentage 

basis, but these charges only apply to the in-service portion of a trip. To more comprehensively address pollution, 

congestion, and other externalities caused by ridehailing, policy makers need to extend these policies to encompass what 

drivers do between trips.  
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Appendix 

This appendix provides more technical details of the regression models and supplementary results.  

We used multinomial logistic regression to estimate the effects of the various variables in Table 1 on the driver’s decisions 

to reposition, cruise, or park. The model tested whether these decisions could be explained based on any of the TAZ level 

variables in Table 1 or differed based on the time or day of the week.  

To avoid serial correlation of the error terms, we downsampled the data to 1-minute resolution. The downsampled dataset 

is about 5 percent of the full dataset. Because the distributions of most non-ratio numeric covariates are right-skewed, we 

applied a log transformation on the non-ratio covariates. This can further avoid serial correlation and strong effects from 

extreme values. Since the magnitudes of covariates have a large variation, we also normalized all numeric covariates by 

subtracting the mean and then dividing by the standard deviation.  

We also tested the robustness of our results to key modeling assumptions in two ways. First, we used a nested logistic 

regression to model a process where drivers first choose between repositioning and remaining in the same area, and if the 

latter, choosing between cruising and parking. The hypothesis is that with low demand, drivers would prefer to reposition 

to another place, while with high demand the driver would choose between parking and cruising. Second, we aggregated 

the point level data to the TAZ level with different times of day and days of week, and then ran a fractional multinomial 

logistic regression of the ratio of points for each behavior on the covariates. Fractional logistic models are designed for 

aggregate data where the dependent variable is a proportion, rather than a binary or categorical outcome. 

Figure A-1 plots the regression residuals, while Table A-1 and Figure A-2 present our main regression results. Tables A-2 

through A-5 present alternative regression specifications to demonstrate the robustness of the results to alternative 

modeling assumptions. 

These plots show the serial correlations of the residual terms of the regressions. The left plot is for the regression results reported 

in Table A-4, which indicate strong serial correlation that may affect the validity of the model. The right plot shows the residuals 

for our main regression with 1-minute resolution, as reported in Table A-1. The plot shows there is no strong serial correlation 

and thus the effectiveness of downsampling to one-minute resolution. 

 

Figure A-1. ACF Plots of Regression Residuals 
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Table A-1. Regression coefficients (main specification) 

Covariate Reposition 

Coefficient 

Cruise 

Coefficient 

(Intercept) 3.822*** 1.736*** 

Demographic and neighborhood variables 

Fraction age 62+ –0.048*** –0.037*** 

HH density 0.031*** 0.022*** 

Fraction of working age –0.013*** –0.051*** 

Employment density –0.184*** –0.049*** 

Service and visitor 

employment density 

0.044*** –0.007 

Fraction high income HHs  –0.110*** –0.086*** 

On-street parking 

capacity 

0.018*** –0.012*** 

Off-street parking 

capacity (public) 

0.011*** –0.018*** 

Off-street parking 

capacity (residential) 

0.013** 0.014** 

Fraction Latinx residents 0.037*** 0.026*** 

Fraction African-American 

residents 

–0.009*** –0.021*** 

Fraction White residents –0.059*** –0.005 

Driver experience (Lyft subsample only) 

Driver experience 0.035*** 0.008** 

Time and day of week variables 

Time period: early AM –0.303*** –0.097*** 

Time period: AM –0.086*** –0.119*** 

Time period: midday –0.092*** –0.125*** 

Time period: PM 0.061*** –0.040*** 

Time period: night 0.003 0.133*** 

Friday 0.063*** –0.023*** 

Mon-Thurs –0.065*** –0.057*** 

Lagged dependent variables 

Lag cruise –1.378*** 1.769*** 

Lag park –6.892*** –5.064*** 

 

A positive coefficient for repositioning indicates that the driver 

is more likely to reposition away from a TAZ. 

Baseline (omitted) categories are the fraction of Asian 

residents, weekend days, and the evening time period. 

 

 

Covariate Reposition 

Coefficient 

Cruise 

Coefficient 

Interaction: with HH density 

Weekday 0.035*** 0.003 

Friday 0.029*** 0.008 

Time period: early AM –0.063*** –0.009 

Time period: AM –0.158*** –0.113*** 

Time period: midday –0.018*** –0.013* 

Time period: PM 0.029*** 0.020** 

Time period: night –0.075*** –0.029** 

Interaction: with employment density 

Weekday 0.067*** 0.071*** 

Friday 0.054*** 0.057*** 

Time period: early AM 0.358*** 0.257*** 

Time period: AM 0.524*** 0.392*** 

Time period: midday 0.287*** 0.183*** 

Time period: PM 0.073*** 0.027* 

Time period: night –0.125*** –0.091*** 

Interaction: with service/visitor  

employment density 

Weekday –0.046*** –0.038*** 

Friday –0.028* –0.036** 

Time period: early AM –0.277*** –0.154*** 

Time period: AM –0.237*** –0.151*** 

Time period: midday –0.143*** –0.038*** 

Time period: PM –0.018 0.044*** 

Time period: night 0.068*** 0.040* 

 

*** p<0.01 ** p<0.05 * p<0.1 

 

Residual Deviance: 6957399 on 15002084 degrees of 

freedom 

Log-likelihood: –3478700 on 15002084 degrees of 

freedom 

 

The estimates are from our preferred model (the point-level 

multinomial logistic regression at one-minute resolution). All 

coefficients are estimated from the full dataset, except that 

for driver experience, which is estimated from the Lyft 

subsample. For computational reasons, we use a random 40% 

subsample of the full dataset.
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Figure A-2. Confidence intervals for regression coefficients 

Note that the chart omits the lag behavior coefficients, which are much larger than the other covariates 
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Table A-2. Regression coefficients (Lyft Subsample) 

Covariate Reposition 

Coefficient 

Cruise 

Coefficient 

(Intercept) 3.670*** 1.484*** 

Demographic and neighborhood variables 

Fraction age 62+ –0.042*** –0.052*** 

HH density 0.012 –0.021 

Fraction of working age –0.040*** –0.098*** 

Employment density –0.148*** –0.061*** 

Service and visitor 

employment density 

0.097*** –0.031 

Fraction high income HHs  –0.101*** –0.040*** 

On-street parking 

capacity 

0.004 –0.029*** 

Off-street parking 

capacity (public) 

–0.008 –0.044*** 

Off-street parking 

capacity (residential) 

–0.0001 0.039*** 

Fraction Latinx residents 0.032*** –0.0001 

Fraction African-American 

residents 

–0.018*** –0.056*** 

Fraction White residents –0.038*** –0.001 

Driver experience (Lyft subsample only) 

Driver experience 0.035*** 0.008** 

Time and day of week variables 

Time period: early AM –0.313*** –0.044* 

Time period: AM 0.003 –0.035** 

Time period: midday –0.027*** –0.101*** 

Time period: PM 0.102*** 0.010 

Time period: night –0.015 0.175*** 

Friday 0.078*** –0.042*** 

Mon-Thurs –0.034*** 0.071*** 

Lagged dependent variables 

Lag cruise –1.187*** 2.234*** 

Lag park –6.657*** –5.043*** 

 

A positive coefficient for repositioning indicates that the driver 

is more likely to reposition away from a TAZ. 

 

 

 

 

 

Covariate Reposition 

Coefficient 

Cruise 

Coefficient 

Interaction: with HH density 

Weekday 0.0003 –0.015 

Friday 0.025 0.019 

Time period: early AM 0.005 0.0005 

Time period: AM –0.114*** –0.112*** 

Time period: midday 0.030*** 0.005 

Time period: PM 0.042*** 0.040*** 

Time period: night –0.067*** –0.042* 

Interaction: with employment density 

Weekday 0.108*** 0.071*** 

Friday 0.093*** 0.045 

Time period: early AM 0.388*** 0.462*** 

Time period: AM 0.403*** 0.470*** 

Time period: midday 0.226*** 0.219*** 

Time period: PM 0.056** 0.026 

Time period: night –0.120*** –0.042 

Interaction: with service/visitor  

employment density 

Weekday –0.051** –0.049** 

Friday –0.041 –0.024 

Time period: early AM –0.342*** –0.279*** 

Time period: AM –0.119*** –0.118*** 

Time period: midday –0.072*** –0.009 

Time period: PM 0.011 0.087*** 

Time period: night 0.062* 0.030 

 

*** p<0.01 ** p<0.05 * p<0.1 

 

Estimates are from a point-level multinomial logistic 

regression at one-minute resolution, as in Table 4. However, 

the data is limited to the Lyft subsample, in order to capture 

the effects of driver experience. For computational reasons, we 

estimate using a random 2% sample of trips.
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Table A-3. Regression coefficients (Nested Logistic Regression) 

Covariate Reposition 

Coefficient 

Cruise 

Coefficient 

(Intercept) 2.596*** 0.396*** 

Demographic and neighborhood variables 

Fraction age 62+ –0.025*** –0.009*** 

HH density 0.012 0.002 

Fraction of working age 0.019*** –0.013*** 

Employment density –0.152*** –0.018*** 

Service and visitor 

employment density 

0.043*** 0.002 

Fraction high income HHs  –0.053*** –0.024*** 

On-street parking 

capacity 

0.019*** –0.001 

Off-street parking 

capacity (public) 

0.021*** –0.001 

Off-street parking 

capacity (residential) 

0.008 0.002 

Fraction Latinx residents 0.022*** –0.007*** 

Fraction African-American 

residents 

0.003 –0.007*** 

Fraction White residents –0.056*** –0.002 

Time and day of week variables 

Time period: early AM –0.245*** –0.019*** 

Time period: AM –0.032*** –0.039*** 

Time period: midday –0.029*** –0.035*** 

Time period: PM 0.061*** –0.017*** 

Time period: night –0.101*** 0.036*** 

Friday 0.068*** –0.003 

Mon-Thurs –0.050*** –0.010*** 

Lagged dependent variables 

Lag cruise –2.850*** 0.399*** 

Lag park –5.727*** –1.145*** 

 

A positive coefficient for repositioning indicates that the driver 

is more likely to reposition away from a TAZ. 

 

 

 

 

 

 

Covariate Reposition 

Coefficient 

Cruise 

Coefficient 

Interaction: with HH density 

Weekday 0.037*** 0.002 

Friday 0.016* –0.001 

Time period: early AM –0.075*** –0.001 

Time period: AM –0.102*** –0.031*** 

Time period: midday –0.015** 0.001 

Time period: PM 0.023*** 0.007* 

Time period: night –0.029*** –0.001 

Interaction: with employment density 

Weekday 0.033*** 0.016*** 

Friday 0.016 0.007 

Time period: early AM 0.225*** 0.090*** 

Time period: AM 0.311*** 0.116*** 

Time period: midday 0.175*** 0.055*** 

Time period: PM 0.038*** 0.005 

Time period: night –0.067*** –0.022** 

Interaction: with service/visitor  

employment density 

Weekday –0.042*** –0.010* 

Friday –0.004 –0.001 

Time period: early AM –0.197*** –0.061*** 

Time period: AM –0.138*** –0.044*** 

Time period: midday –0.113*** –0.018*** 

Time period: PM –0.033** 0.012 

Time period: night 0.027 0.009 

 

Within-nest correlation: 0.227*** 

 

*** p<0.01 ** p<0.05 * p<0.1 

 

 

The estimates are from a nested logistic regression, which first 

models the decision to stay in the neighborhood (“park or 

cruise,” nest one) vs reposition away to a different 

neighborhood (nest two). Then, for the first nest, it models the 

decision to park vs cruise. 
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Table A-4. Regression coefficients (fractional logistic regression at the TAZ level) 

Covariate Reposition 

Coefficient 

Cruise 

Coefficient 

(Intercept) 2.468*** 1.558*** 

Demographic and neighborhood variables 

Fraction age 62+ –0.106*** –0.092*** 

HH density –0.105*** –0.019*** 

Fraction of working age –0.014*** –0.093*** 

Employment density –0.519*** –0.241*** 

Service and visitor 

employment density 

0.069*** –0.088*** 

Fraction high income HHs  –0.201*** –0.120*** 

On-street parking 

capacity 

0.106*** 0.015*** 

Off-street parking 

capacity (public) 

   0.037*** –0.014*** 

Off-street parking 

capacity (residential) 

0.114*** 0.114*** 

Fraction Latinx residents 0.084*** 0.054*** 

Fraction African-American 

residents 

–0.043*** –0.082*** 

Fraction White residents –0.083*** –0.028*** 

Time and day of week variables 

Time period: early AM –0.584*** –0.512*** 

Time period: AM –0.275*** –0.515*** 

Time period: midday –0.272*** –0.526*** 

Time period: PM –0.020*** –0.340*** 

Time period: night –0.049*** –0.228*** 

Friday    0.050*** –0.058*** 

Mon-Thurs –0.219*** –0.182*** 

 

A positive coefficient for repositioning indicates that the driver 

is more likely to reposition away from a TAZ. 

 

 

 

 

 

 

 

Covariate Reposition 

Coefficient 

Cruise 

Coefficient 

Interaction: with HH density 

Weekday 0.088*** 0.033*** 

Friday 0.058*** 0.012*** 

Time period: early AM –0.070*** –0.041*** 

Time period: AM –0.236*** –0.224*** 

Time period: midday 0.033*** –0.042*** 

Time period: PM 0.126*** 0.036*** 

Time period: evening 0.103*** 0.021*** 

Interaction: with employment density 

Weekday 0.121*** 0.112*** 

Friday 0.033*** 0.026*** 

Time period: early AM 0.931*** 0.690*** 

Time period: AM 1.106*** 0.867*** 

Time period: midday 0.600*** 0.411*** 

Time period: PM 0.239*** 0.137*** 

Time period: evening 0.122*** 0.089*** 

Interaction: with service/visitor  

employment density 

Weekday –0.094*** –0.082*** 

Friday –0.005*** –0.001 

Time period: early AM –0.598*** –0.329*** 

Time period: AM –0.467*** –0.299*** 

Time period: midday –0.280*** –0.071*** 

Time period: PM –0.067*** 0.075*** 

Time period: evening –0.045*** 0.002* 

 

*** p<0.01 ** p<0.05 * p<0.1 

 

The estimates are from a fractional logistic regression model. 

Points are aggregated to the TAZ level, and the model 

estimates the proportion of points according to each behavior. 

Note that the lagged behaviors cannot be captured using this 

approach. 
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Table A-5. Regression coefficients (full resolution) 

Covariate Reposition 

Coefficient 

Cruise 

Coefficient 

(Intercept) 7.000*** 2.408*** 

Demographic and neighborhood variables 

Fraction age 62+ –0.027* –0.019 

HH density –0.003 –0.003 

Fraction of working age 0.0003 –0.045** 

Employment density –0.184*** –0.06 

Service and visitor 

employment density 

0.025 0.04 

Fraction high income HHs  –0.133*** –0.089*** 

On-street parking 

capacity 

0.047*** 0.034* 

Off-street parking 

capacity (public) 

–0.007 –0.028* 

Off-street parking 

capacity (residential) 

0.008 0.014 

Fraction Latinx residents 0.057*** 0.043*** 

Fraction African-American 

residents 

–0.017 –0.032** 

Fraction White residents –0.031** 0.003 

Time and day of week variables 

Time period: early AM –0.288*** –0.089* 

Time period: AM –0.085** –0.108*** 

Time period: midday –0.095*** –0.113*** 

Time period: PM 0.027 –0.036 

Time period: night 0.003 0.101** 

Friday 0.048 0.008 

Mon-Thurs –0.077*** –0.095*** 

Lagged dependent variables 

Lag cruise –3.518*** 4.658*** 

Lag park –12.598*** –8.211*** 

 

A positive coefficient for repositioning indicates that the driver 

is more likely to reposition away from a TAZ. 

 

 

 

 

 

 

Covariate Reposition 

Coefficient 

Cruise 

Coefficient 

Interaction: with HH density 

Weekday 0.032 –0.007 

Friday –0.020 –0.046 

Time period: early AM –0.044 0.007 

Time period: AM –0.128*** –0.066 

Time period: midday 0.039 0.041 

Time period: PM 0.076** 0.051 

Time period: night –0.094* –0.054 

Interaction: with employment density 

Weekday 0.038 0.032 

Friday –0.054 –0.098 

Time period: early AM 0.531*** 0.387*** 

Time period: AM 0.590*** 0.576*** 

Time period: midday 0.322*** 0.257*** 

Time period: PM 0.017 0.016 

Time period: night –0.053 0.054 

Interaction: with service/visitor  

employment density 

Weekday –0.025 –0.012 

Friday 0.098 0.129* 

Time period: early AM –0.368*** –0.263** 

Time period: AM –0.299*** –0.337*** 

Time period: midday –0.206*** –0.116** 

Time period: PM –0.029 0.015 

Time period: night 0.005 –0.051 

 

*** p<0.01 ** p<0.05 * p<0.1 

 

Estimates are from a point-level multinomial logistic 

regression at one-minute resolution, as in Table 4. However, 

the full dataset is used, rather than downsampling to one-

minute resolution. Downsampling mitigates the problems with 

serial correlation (see Figure A-1), but means that estimates 

are less precise (i.e., confidence intervals are wider). 
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